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In this study, the dynamic stability of "nite element modelling of laminated piezo-elastic
structures is investigated. The criteria for stability are established based on the second
method of Lyapunov, which considers the energy of the system. The results show that the
equations of motion are asymptotically stable. However, energy dissipation through the
piezoelectric e!ect continued at zero feedback gain. This implied that the structure was
controlled unconditionally. Subsequently, a control strategy that satis"es the condition of
no piezoelectric e!ects when the gain set to zero is developed.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Due to their adaptable properties, piezoelectric structural materials can function as
distributed sensors and actuators for monitoring and controlling the response of a
structure. In sensor applications, the strains in the piezoelectric material can be determined
by measuring the induced electric potential. In actuator applications, distributed forces can
be e!ected by subjecting the piezoelectric material to an appropriate electric potential.

By integrating piezoelectric elements into advanced composite materials, the potential for
forming a high-strength, high-sti!ness, lightweight structure capable of self-monitoring,
analyzing and adapting to changing operating conditions can be explored. Models
simulating the control of various structural elements have been developed and studied for
this purpose. Two approaches in active control using piezoelectric sensors have been
adopted. One approach assumes the closed-circuit mode [1}3] and the other assumes the
open-circuit mode [4}9].

The active control model developed through assuming a closed-circuit mode has been
studied extensively by Miller et al. [3]. Results of the study show that applying suitable
potentials to the piezoelectric elements via an ampli"er can e!ect control of a structure. At
zero ampli"er gain, the structure is free from any piezoelectric control. Thus, the active
control model resembles a passive one in this state.

Extensive research on an active control model of an open-circuit mode has also shown
that control can be e!ected through the piezoelectric elements. However, these studies have
not considered the bearing of the active control model at zero ampli"er gain. Also, the
potential generated by the sensor elements in this condition has been assumed to be
insigni"cant implying that its in#uence in controlling the structure is not noticeable [4].

This study shows, using the model developed by Tzou and Tseng [4], that control forces
persist at zero ampli"er gain when the current active control model of the open-circuit
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



464 M. KEKANA
mode is used. These control forces are signi"cant to be ignored in controlling the structure.
In light of this, an active control model of the open-circuit mode, which resembles the
passive one when the ampli"er gain is set to zero, is proposed and developed.

2. FORMULATION OF THE FINITE ELEMENT EQUATIONS OF MOTION

Figure 1 shows the schematic of an element of the piezo-elastic structure. The structure
undergoing the action of the external forces is assumed to be perfectly bonded, elastic and
orthotropic in behaviour. The deformation of the structure is assumed to take place under
isothermal conditions. The frame of reference is taken to coincide with the principal axes of
the material. Based on these assumptions, a linear constitutive model is adopted to predict
the behaviour of the piezo-elastic structure.

2.1. CONSTITUTIVE EQUATION

The linear constitutive equations coupling the elastic "eld and the electric "eld can be
expressed by the direct and inverse piezoelectric equations. These are written in the
principal direction of the material, respectively, as follows:

D�"e���#g�E, �"C��!e�E, (1, 2)

where D� represents the electric displacement vector, e� the piezoelectric constant matrix,
� the strain vector, g� the dielectric constant matrix, E the electric "eld vector, �� the stress
vector, C� the elasticity matrix, e�� the transpose of e� and the prime represent the local
co-ordinate system. It is noted that brackets [ ] and braces � � representing matrices and
vectors have been omitted. To transform these equations from the principal direction of the
material to co-ordinates that are geometrically natural to the body, "rst order and second
order transformation matrices T

�
and T

�
are introduced. The resulting constitutive
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Figure 1. Schematic diagram of the piezoelectric structure.
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equation of the piezo-elastic laminates oriented arbitrarily becomes

D"T��
�
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�#T��
�
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�
E, �"T��

�
CT��

�
�!T��

�
eT

�
E (3, 4)

written compactly, respectively, as

D"eN ��#g� E �"C� �!e� E. (5, 6)

Equation (5) describes the e!ect of elastic strain on the dielectric displacement. While,
equation (6) describes the additional stress induced by the electric "eld.

2.2. PIEZO-ELASTIC DYNAMICS: A VARIATIONAL FORMULATION

The dynamic equations representing the behaviour of the piezo-elastic structure are
derived using Hamilton's variational principle

�
�

� (¹#=) dt"0 (7)

where ¹ represents the kinetic energy and= the work function. The kinetic energy for the
body � is given as

¹"��

1

2
uR ��uR d�, (8)

where uR is the velocity vector and � the mass density. The work function is given as

="��

1
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The work done by external mechanical and electrical forces is given as
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where � represents the electric potential, Q the surface charge, P
�
, P

�
and P

�
the body,

surface and concentrated load vectors, respectively. By substituting equations (8)}(10) into
equation (7), Hamilton's variational principle requires that
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�(�Q) d���dt"0. (11)

In equation (11), the strains are represented as �"Lu and the electric "eld as E"!
�,
where L represents a matrix of di!erential operators with respect to space.
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2.3. PIEZO-ELASTIC DYNAMICS: FINITE ELEMENT FORMULATION

The continuous displacement "eld is approximated by a discrete one using the "nite
element approximation functions such as

u+u	"N
�
uJ , (12)

where u represents the continuous displacement "eld, u	 the approximate displacement
"eld, uJ the discrete displacements, N the interpolation functions and h the association of the
approximate displacements with the mesh. The continuous potential "eld is approximated
by a discrete one using the "nite element approximation functions such as

�+�	"N
(
�I , (13)

where � represents the continuous potential "eld, �	 the approximate potential "eld and
�I the discrete potentials. Substituting equation (12) and (13) into equation (11), the "nite
element statement can be written as
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. (15)

2.4. ACTIVE VIBRATION MEASUREMENT AND CONTROL

The dynamic equations, which are given in terms of the displacements and potentials, are
reduced to one given in terms of displacements only. That is,

M
��

u�G#K
��
uJ #K

�(
K��

((
K

(�
uJ "F!K

�(
K��

((
G. (16)

The potential vector can be recovered using

�I "K���� (G#K��
u� ). (17)

The system dynamics is governed by equation (16) and the distributed dynamic
measurement can be calculated using equation (17). Note that G is usually zero in the
distributed sensor layer [4]. Thus, the distributed sensor output is estimated by

�I "K���� K��
u� . (18)

This potential is regarded as the output signal from the piezoelectric sensor layer and it can
be processed further to provide feedback to the piezoelectric actuators for active vibration
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control. Also, the sensor output in equation (18) is obtained from the mechanical
displacements only.

The right-hand side of equation (16) contains two force terms, i.e., the mechanical forces
and electrical forces. In active vibration control, the electrical forces are regarded as the
feedback control forces F

�
. They are given as

F
�
"K

�(
K��

((
G. (19)

G is taken as a function of the feedback potential in terms of the output signal from the
distributed sensing layer. This output signal is obtained from equation (18). Hence the
feedback force, associated with the velocity, can be written as

F
�
"K

�(
K��

((
A

�
K��

((
K

(�
uJ Q , (20)

where A
�
represents the velocity-driven ampli"er gain matrix. Substituting equation (20)

into the dynamic equation (16) yields
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Equation (21) may be written compactly as

M
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(�
represent damping due to the

piezoelectric e!ect.
All that remains is to see whether the feedback control forces induced by the feedback

voltage can e!ectively enhance the system damping and therefore suppress the vibration of
the structure. This will be investigated using stability analysis based on Lyapunov's second
method. From equation (22), it is known that equivalent damping is only relative to the
feedback potential, which is determined by the amount of feedback gain A

�
. Thus, by

adjusting the feedback gain, changes to the damping of the structure are made so that the
goal of controlling and suppressing the vibration of the structure can be achieved.

3. STABILITY ANALYSIS

The second method of Lyapunov provides a means for determining the stability of
a system without explicitly solving for the eigenvalues. Stability criteria are established
based on a positive-de"nite scalar functional, namely the Lyapunov functional, which is
chosen to be representative of the energy of the system. The criteria that emerge ensure that
the total time derivative of the functional will be negative de"nite and consequently
guarantee that the system represented by it will be asymptotically stable.

3.1. LYAPUNOV ENERGY FUNCTIONAL

The energy #ux is obtained from the equation of motion by pre-multiplying equation (21)
by u � and integrating with respect to time. That is,
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The external forces will be omitted since they are considered to be bounded. Thus
� u�� �F dt(R. In light of du� "u�� dt and du�� "u�G dt, equation (23) suggests that the
Lyapunov's functional < may be taken as

� u�� �M
��
du�� #� u� �K

��
du� "!�u�� �K�(

K��
((

A
�
K��

((
K

(�
u�� dt!�u�� �K�(

K��
((

K
(�

u� dt. (24)

In equation (24), the mass matrix M
��

is positive de"nite and the sti!ness matrix K
��

is
positive de"nite. When u� O0 and u�� O0, the left-hand side (LHS) of < is positive de"nite.
Since the LHS is equal to the right-hand side (RHS), the RHS is also positive-de"nite.
However, asymptotic stability is guaranteed when the time derivative of equation (24) is
negative de"nite: i.e. when

<Q (0, (25)

where

<Q "!u�� �K
�(

K��
((

A
�
K��
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K
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K

(�
u� . (26)

The validity of expression (25) as a su$cient condition for asymptotic stability is supported
through physical insight. Since the Lyapunov functional is based on the energy of the
system, equation (26) represents the energy #ux of the system. Thus, when the gain is set to
zero, it is required that there should be no energy loss through the piezoelectric in#uence.
The dissipative forces such as structural damping, inter-laminate friction and non-ideal
boundary constraints ensure that the system energy #ux of the passive dynamic structure is
still negative de"nite. As long as the active piezoelectric elements do not add energy to the
system, then asymptotic stability is ensured. The measure of active vibration suppression
achieved in any given design will depend solely on choosing the appropriate potential
control functions that are linked to the gain. These cause <Q to be large in magnitude and
negative in sign so as to extract energy rapidly.

3.2. STABILITY CRITERIA

Su$cient conditions for the actuator control inputs to ensure asymptotic stability follow
from expressions (25) and (26). Introducing the relation u� +u�� �t from du� "u� � dt, equation
(26) can be written as

<Q "!u�� �K
�(

K��
((

(A
�
K��

((
#�tI)K

(�
u�� . (27)

Since the sti!ness matrices are positive de"nite, then equation (27) can be negative de"nite if

A
�
K��

((
#�tI'0. (28)

A general and su$cient condition for stability implied by this statement is that the set of
potential control functions must ensure the negative de"niteness of <Q . However, it will be
practical to express a stronger condition on each particular actuator layer such that if this
condition is satis"ed for each actuator layer then asymptotic stability is ensured. This
implies that the condition A

�
'!K

((
�t must be satis"ed for every actuator layer. A more

practical approach will be to require that A
�
'0 instead.



LAMINATED PIEZO-ELASTIC STRUCTURES 469
For the ampli"er gain 0(A
�
(1, the potential fed to the actuator layer will be less than

the potential observed from the sensor layer since

�I f"A
�
�I s , (29)

where �I
�
represent the feedback potential, �I

�
the sensor potential and A

�
the gain. For

A
�
"1, the sensor potential is the same as the actuator potential, whereas the condition

A
�
"0 describes a zero actuator potential. Equation (27) suggests that there will be energy

dissipation occurring through the piezoelectric e!ect when A
�
"0. This implies that the

active structure is controlled unconditionally. Practically, it is required that there should be
no energy dissipation through the piezoelectric e!ect when the gain is set to zero [3]. It is
evident, however, that the condition A

�
'0 must be satis"ed for asymptotic stability to

exist.
Based on equation (21), the second term on the LHS represents accessible feedback

control elements whereas the fourth term represents inaccessible feedback control elements.
In order to achieve the full bene"t of the feedback system, all feedback control states must
be accessible. Although this requirement may not be satis"ed generally, the design
procedure as presented by equation (21) may still be valid. That is, the required value of the
feedback gain may be computed, based on the accessible control states, to achieve the
desired response of the structure. In view of this, an alternative active control strategy will
be developed to satisfy the condition of no piezoelectric e!ects when the gain is set to zero.

3.3. ACTIVE CONTROL FORMULATION

In order to arrive at certain easily implementable strategies which will be su$cient to
ensure both stability and active dissipation of energy, one may exploit the duality which
exists between piezoelectric spatially distributed sensors and actuators. That is, it is
su$cient to ensure stability and active vibration control provided that each actuator layer
is associated with an identically spatial varying sensor layer which is collocated on the
opposite side of the mid-plane and that the actuator control inputs are always identical in
sign to the potential induced by the corresponding sensors.

In equation (14), the dynamic forces will change the state of the forces associated with the
inertia, sti!ness and piezoelectricity respectively. In the passive state of a laminated
composite structure with embedded piezoelectric layers, the potential is observed on the
layer identi"ed as a piezoelectric actuator, as well as on the layer identi"ed as the
piezoelectric sensor except that it is opposite in sign. During active control, the feedback
voltage �I

�
is fed onto the actuator layer at the same points as those used to measure the

potential sensed by the actuator layer �I �
�
during the passive state. Thus, the e!ective voltage

is given as

�I
���

"�I
�
!�I �

�
. (30)

Equation (30) demonstrates that the feedback potential must "rst overcome the voltage
generated by the piezoelectric e!ect on the actuator layer before any control can be e!ected.
This feedback potential is derived from the sensor potential as given in equation (29).
Substituting equation (29) into equation (30) yields the feedback voltage as

�I
�
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�
�I

�
"�I

���
#�I �

�
. (31)
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In view of equation (18), the feedback voltage may be given in terms of the velocity as

�I
�
"A

�
K���� K��

u�� . (32)

Substituting equation (32) into the "rst of equation (14) gives the dynamic equation in terms
of the displacements as
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Omitting the external forces, this suggests that Lyapunov's functional may be taken as
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When u�� O0 and u� O0, the LHS is positive de"nite. Therefore,

<Q "!u�� �K
�(

A
�
K��

((
K

(�
u�� . (35)

With A
�
'0, <Q is negative de"nite. This implies that equation (33) is asymptotically stable.

This may be extended so that the system represented by it is asymptotically stable. It is
evident that the control approach represented by equation (33) requires less computational
e!ort as compared to that of equation (21).

4. NUMERICAL RESULTS

An in-house program was used to evaluate the dynamic response represented by
equations (21) and (33). A composite beam, 0)1�0)005�0)00005 m�, sandwiched between
0)00005 m thick piezoelectric sensor/actuator was considered to compare the two feedback
approaches. A uniformly distributed load was applied to the entire beam. Properties for the
PZT and the composite material are shown in Table 1.

Omitting the dynamic e!ects and setting the feedback gain to zero, the static response of
the current control model given by equation (21) is shown in Figure 2 and that of the
proposed control model given by equation (33) is shown in Figure 3. It is observed that the
proposed model exhibits higher displacement amplitude than the current control model.
TABLE 1

Material properties of the composite structure and piezoelectric material

Property PZT Graphite/epoxy

E
�

0)2E#10 N/m� 0)98E#11 N/m�
E
�

0)2E#10 N/m� 0)79E#10 N/m�
G

��
0)775E#9 N/m� 0)56E#10 N/m�

v
��

0)29 0)29
v
��

0)28 0)28
� 1800 kg m� 1520 kg m�
e
��

0)046 C m� 0)0
e
��

0)046 C m� 0)0
e
��

0)0 0)0
g
��

0)1062E}9 F/m 0)0
g
��

0)1062E}9 F/m 0)0
g
��

0)1062E}9 F/m 0)0
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Figure 2. Beam de#ection using the current active control model at zero gain.
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Figure 3. Beam de#ection using the proposed control model at zero gain.

LAMINATED PIEZO-ELASTIC STRUCTURES 471
Since the external force is the same in both models, it implies that the current control model
has a higher sti!ness than the proposed control model. It is noted also that at this state, the
proposed control model resembles the passive model, with a known accuracy.

Setting the gain to zero and excluding structural damping*for the dynamic response,
Table 2 shows the "rst three natural frequencies obtained using the present control models.
It is observed that the current control model yields higher natural frequencies than the
passive model and the proposed control model yieldsthe same natural frequencies as the
passive model.

The undamped time response at zero gain to a step function is shown for the current and
the proposed control models in Figures 4 and 5 respectively. Consistent with the above
results, the aurrent control model exhibits lower amplitude and higher natural frequency



TABLE 2

First three natural frequencies using the present active control models

Passive Current Proposed

��
�

1)1220�10� 4)9563�10�� 1)1220�10�
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Figure 4. Time response of the current active control model at zero gain to a step force.
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Figure 5. Time response of the proposed active control model at zero gain to a step force.
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than the proposed model. For the damped case, it is readily seen by inspection that the
damping force for the current control model will be higher than that of the proposed model
by a factor K��

((
.
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The above results show that the current control model at zero gain under-predicts the
de#ection in a static and dynamic response and over-predicts the natural frequencies. This
indicates that the model represents a structure which is sti!er than its design sti!ness. The
additional sti!ness, above the design sti!ness, indicates that piezoelectric control forces
persist at zero gain. Contrary to this, it is required that the beam be free from piezoelectric
control forces at this state, a phenomenon exhibited by the proposed control model. The
additional sti!ness introduced in the current model is not representative of the desired
assumption and/or application. Hence, structures constructed with the aid of the current
control model will respond di!erently from their predicted behaviour thus resulting in
undesired responses and inaccuracies.

5. CONCLUSION

A current control strategy for laminated piezo-elastic structures using an open-circuit
mode has been investigated. The equations of motion were found to be asymptotically
stable. However, energy dissipation through the piezoelectric e!ect was observed at
zero feedback gain. This implied that the active structure was controlled
unconditionally*which is not representative of the desired application. As a result, a
control strategy that satis"ed the condition of no piezoelectric e!ects when the gain is set to
zero was then developed. This strategy was based on the second method of Lyapunov,
where a Lyapunov functional indicative of the total system mechanical energy was chosen.
Asymptotic stability of the structure was shown to be ensured if the feedback control
functions are greater than zero; and the feedback potential is greater than the induced
piezoelectric potential of the actuator layer. With these criteria satis"ed, active vibration
control became uniquely dependent on the feedback gain.

REFERENCES

1. W. S. HWANG and H. C. PARK 1993 American Institute of Aeronautics and Astronautics Journal 31,
930}937. Finite element modeling of piezoelectric sensors and actuators.

2. K. CHANDRASHEKHARA and P. DONTHIREDDY 1997 European Journal of Mechanics, A/Solids 16,
709}721. Vibration suppression of composite beams with piezoelectric devices using a higher order
theory.

3. S. E. MILLER, H. ABRAMOVICH and Y. OSHMAN 1995 Journal of Sound and<ibration 183, 797}817.
Active distributed vibration control of anisotropic piezoelectric laminated plates.

4. H. S. TZOU and C. I. TSENG 1991Mechanical Systems and Signal Processing 5, 215-231. Distributed
vibration control and identi"cation of coupled elastic/piezoelectric systems: "nite element
formulation and applications.

5. H. S. TZOU and C. I. TSENG 1990 Journal of Sound and <ibration 138, 17}34. Distributed
piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter
systems: a piezoelectric "nite element approach.

6. J. A. MITCHELL and J. N. REDDY 1995 International Journal of Solids and Structures 32, 2345}2367.
A re"ned hybrid plate theory for composite laminates with piezoelectric laminae.

7. D. T. DETWILER, M. H. H. SHEN and V. B. VENKAYYA 1995 Finite Element Analysis and Design 20,
87}100. Finite element analysis of laminated composite structures containing distributed
piezoelectric actuators and sensors.

8. Z. WANG, S. CHEN andW. HAN 1997Finite Elements in Analysis and Design 26, 303}314. The static
shape control for intelligent structures.

9. S. H. CHEN, Z. D. WANG and X. H. LIU 1997 Journal of Sound and <ibration 200, 167}177. Active
vibration control and suppression for intelligent structures.


	1. INTRODUCTION
	2. FORMULATION OF THE FINITE ELEMENT EQUATIONS OF MOTION
	Figure 1

	3. STABILITY ANALYSIS
	4. NUMERICAL RESULTS
	TABLE 1
	Figure 2
	Figure 3
	TABLE 2
	Figure 4
	Figure 5

	5. CONCLUSION
	REFERENCES

